Fisica e Matematica

Computer quantistici, ecco la simulazione chimica più potente di sempre

Non è passato troppo tempo da quando ve ne abbiamo raccontato caratteristiche e potenzialità, usando non a caso la parola supremazia. A quanto pare, ne avevamo ben donde: Sycamore, il super computer quantistico in mano a Google, ha appena eseguito con successo la simulazione chimica più complessa di sempre, modellizzando con successo il comportamento di una lunga catena di atomi di idrogeno. Lo ha annunciato Ryan Babbush, capo della divisione di algoritmi quantistici di Big G, parlando alla conferenza Q2B,appena terminata in California: “È un risultato di cui siamo molto fieri”, ha spiegato, “dal momento che i qubit che abbiamo utilizzato e il numero degli elettroni che abbiamo modellizzato sono il doppio di qualsiasi simulazione chimica mai eseguita finora”.

La simulazione del comportamento di macromolecole è una delle applicazioni dei computer quantistici a cui si guarda con più aspettative. Tali molecole, infatti, sono molto difficili da modellizzare usando computer classici – come ricorda il New Scientist, con l’aumentare della dimensione della molecola, i calcoli si fanno troppo lunghi e complessi per poter essere eseguiti da computer al silicio. Di contro, i computer quantistici sfruttano le potenzialità dei qubit (la minima entità di informazione, equivalente al bit classico) per eseguire (alcuni) calcoli in modo molto più veloce: “Gli atomi sono quantistici, i processori sono quantistici”, ha commentato tautologicamente Linghua Zhu del Virginia Tech, non coinvolto nel lavoro. “Stiamo usando la meccanica quantistica per simulare la meccanica quantistica”. Tutto torna, dunque.

Finora, la molecola più grande mai simulata con un computer quantistico è stato l’idruro di berillio, composto da un atomo di berillio e due atomi di idrogeno. La simulazione di oggi, invece, è relativa a una molecola molto più grande, costituita da una catena di ben 12 atomi di idrogeno, peraltro non esistente in natura. Per portarla a termine, i ricercatori di Google hanno usato alcuni (non è dato sapere quanti) dei 54 qubit a disposizione di Sycamore: “Le catene di atomi di idrogeno”, ha detto ancora Babbush, “sono tra le più simulate nel campo della chimica quantistica, perché si tratta di sistemi relativamente semplici da espandere”, attaccandovi nuovi atomi. E sebbene questa specifica simulazione non rientri tra quelle che un computer classico non sarebbe in grado di portare a termine, “dimostra comunque”, ha concluso Zhu, “la potenza del computer quantistico di Google”.

Credits immagine: Unsplash
Via: Wired.it

Sandro Iannaccone

Giornalista a Galileo, Giornale di Scienza dal 2012. È laureato in fisica teorica e collabora con le testate La Repubblica, Wired, L’Espresso, D-La Repubblica.

Articoli recenti

Atrofia muscolare spinale, ampliati i criteri di rimborsabilità della terapia genica

L’Aifa ha approvato l’estensione della rimborsabilità del trattamento, che era già stato approvato per l'atrofia…

8 ore fa

Così i tardigradi combattono gli effetti delle radiazioni

Resistono alle radiazioni potenziando la loro capacità di riparare i danni al dna. Piccolo aggiornamento…

1 giorno fa

Leptospirosi: perché crescono i casi a New York?

Mai così tanti casi di leptospirosi in un anno dal 2001: a contribuire all’aumento delle…

4 giorni fa

Fogli d’oro sottilissimi: arriva il goldene

Potrebbe essere usato in diverse applicazioni come catalizzatore per la conversione dell'anidride carbonica e la…

6 giorni fa

Ecco il buco nero stellare più grande della Via Lattea

BH3 è stato individuato grazie alle strane oscillazioni di una stella povera di metalli

1 settimana fa

Inquinamento, un progetto italiano di monitoraggio dallo spazio

Istituto superiore di sanità e Agenzia spaziale italiana hanno sviluppato una tecnologia per monitorare l’inquinamento…

1 settimana fa

Questo sito o gli strumenti di terze parti in esso integrati trattano dati personali (es. dati di navigazione o indirizzi IP) e fanno uso di cookie o altri identificatori necessari per il funzionamento e per il raggiungimento delle finalità descritte nella cookie policy.

Leggi di più