Categorie: Vita

Cellule colte sul fatto. In 3D

Anche nella fisica ottica e nella microscopia esistono i premi per le migliori tecniche dell’anno. Se ci fosse anche un premio per il miglior film in 3D, ad aggiudicarselo sarebbe probabilmente il fisico Eric Betzig e il suo gruppo dell’Howard Hughes Medical Institute (Hhmi). La motivazione? Per il corto di una cellula in movimento con la migliore risoluzione mai ottenuta. 

La tecnica sviluppata si chiama Bessel beam plane illumination microscopy (microscopia con illuminazione a fascio di Bessel piano). In un nuovo studio, pubblicato oggi su Nature Methods, Betzig ha portato questa tecnica a un livello di risoluzione di tre ordini maggiore rispetto a quanto finora possibile, arrivando a mostrare i dettagli delle componenti cellulari mentre la cellula stessa è in piena attività. Per di più, senza arrecare alcun danno al campione. Di solito, infatti, quando si sottopone una cellula a una luce molto intensa per un tempo prolungato, questa viene danneggiata e muore. 

“La maggior parte delle tecniche che ho sviluppato finora riguarda cellule morte”, ha detto il fisico alla Bbc: “ Puoi ricavare delle informazioni ad altissima risoluzione studiando le cellule morte e ferme, ma non potrai conoscerne il movimento e le dinamiche”. 

Come dice il nome, il sistema si serve del laser Bessel che produce un raggio non uniforme, più intenso nella parte centrale e più debole nella parte esterna. Il campione non viene attraversato dal laser dal basso verso l’alto, ma colpito lateralmente da una serie di fogli di luce. In questo modo vengono fatte delle scansioni rapidissime solo sul piano messo a fuoco dal microscopio. In pratica, spostando via via il piano focale, è come se si affettasse il campione con delle lame di luce. Le immagini delle fettine vengono poi impilate l’una sull’altra per dare la scansione completa 3D. 

La novità sta nell’essere riusciti ad ottenere queste immagini 3D di cellule e strutture in movimento, creando poi dei cortometraggi – per esempio della divisione cellulare – che non risentono dei difetti ottici delle altre tecniche. Non solo la risoluzione, ma anche la velocità è impressionante: si ottengono 200 fettine in un secondo.

Fonte: Wired.it

Tiziana Moriconi

Giornalista, a Galileo dal 2007. È laureata in Scienze Naturali (paleobiologia) e ha un master in Comunicazione della Scienza conseguito alla Scuola Superiore di Studi Avanzati di Trieste. Collabora con D la Repubblica online, Salute SenoLe Scienze, Science Magazine (Ed. Pearson), Wired.it.

Articoli recenti

Mesotelioma, 9 casi su 10 sono dovuti all’amianto

Si tratta di una patologia rara e difficile da trattare. Colpisce prevalentemente gli uomini e…

2 giorni fa

Uno dei più misteriosi manoscritti medioevali potrebbe essere stato finalmente decifrato

Secondo gli autori di un recente studio potrebbe contenere informazioni sul sesso e sul concepimento,…

5 giorni fa

Ripresa la comunicazione con la sonda Voyager 1

Dopo il segnale incomprensibile, gli scienziati hanno riparato il danno a uno dei computer di…

7 giorni fa

Atrofia muscolare spinale, ampliati i criteri di rimborsabilità della terapia genica

L’Aifa ha approvato l’estensione della rimborsabilità del trattamento, che era già stato approvato per l'atrofia…

1 settimana fa

Così i tardigradi combattono gli effetti delle radiazioni

Resistono alle radiazioni potenziando la loro capacità di riparare i danni al dna. Piccolo aggiornamento…

1 settimana fa

Leptospirosi: perché crescono i casi a New York?

Mai così tanti casi di leptospirosi in un anno dal 2001: a contribuire all’aumento delle…

2 settimane fa

Questo sito o gli strumenti di terze parti in esso integrati trattano dati personali (es. dati di navigazione o indirizzi IP) e fanno uso di cookie o altri identificatori necessari per il funzionamento e per il raggiungimento delle finalità descritte nella cookie policy.

Leggi di più