Categorie: Fisica e Matematica

Ecco il transistor a protoni

Prima o poi, arriva il momento di cambiare. Succede anche per i dispositivi elettronici, che un giorno potrebbero funzionare grazie ai protoni invece che ai tradizionali flussi di elettroni. Il cambio di paradigma non è affatto casuale, perché permetterebbe ai nuovi circuiti di comunicare direttamente con gli organismi viventi, in cui le cellule si scambiano informazioni attraverso il passaggio di ioni e protoni, appunto. Lo spiega uno studio pubblicato su Nature Communications dai ricercatori dell’Università di Washington, coordinati dal nanotecnologo italiano Marco Rolandi.

Uno dei componenti fondamentali dei circuiti biologici è lo ione idrogeno (H+), ovvero un nucleo atomico composto da un solo protone che spostandosi produce una vera e propria corrente. Questa serve ad alimentare alcune funzioni dell’organismo, tra le quali la produzione di Atp, la molecola che e’ usata per trasferire energia nel nostro corpo. Perché, allora, non costruire un circuito artificiale in grado di interagire con i sistemi viventi? Il gruppo di Rolandi ci ha pensato su, e ha realizzato il primo prototipo di dispositivo a corrente protonica sfruttando un materiale adatto a condurre gli ioni H+. La scelta è caduta sul chitosano, un polimero ricavato dal gladio dei calamari, un organo primitivo rimasto dopo la scomparsa del guscio.

Il transistor a protoni realizzato nei laboratori della Uw misura cinque micrometri – appena un ventesimo dello spessore di un capello – e poggia su un supporto di silicio. Il circuito è in grado di veicolare una corrente di protoni il cui flusso può essere acceso e spento attraverso un interruttore. Il piccolo dispositivo non è ancora compatibile con gli organismi viventi e dovrà essere adattato prima di poter essere testato per questo scopo.

Di fatto, però, si è aperta la strada verso un nuovo campo della ricerca, quello della bionanoprotonica. In futuro, gli scienziati potranno costruire modelli di transistor biocompatibili da applicare a qualsiasi tessuto organico. Lo scopo? Magari quello di costruire un’interfaccia artificiale attraverso cui monitorare, o addirittura coadiuvare, le funzioni vitali degli esseri viventi.

Riferimento: doi:10.1038/ncomms1489 

Foto credits: Marco Rolandi, University of Washington 

Lorenzo Mannella

Si occupa di scienza, internet e innovazione. Laureato in Biotecnologie presso l'Università di Pisa, ha frequentato il master SGP in comunicazione scientifica presso Sapienza Università di Roma. Collabora con Galileo dal 2011. Scrive per Wired, Sapere e L'Espresso.

Articoli recenti

Uno dei più misteriosi manoscritti medioevali potrebbe essere stato finalmente decifrato

Secondo gli autori di un recente studio potrebbe contenere informazioni sul sesso e sul concepimento,…

3 giorni fa

Ripresa la comunicazione con la sonda Voyager 1

Dopo il segnale incomprensibile, gli scienziati hanno riparato il danno a uno dei computer di…

5 giorni fa

Atrofia muscolare spinale, ampliati i criteri di rimborsabilità della terapia genica

L’Aifa ha approvato l’estensione della rimborsabilità del trattamento, che era già stato approvato per l'atrofia…

6 giorni fa

Così i tardigradi combattono gli effetti delle radiazioni

Resistono alle radiazioni potenziando la loro capacità di riparare i danni al dna. Piccolo aggiornamento…

7 giorni fa

Leptospirosi: perché crescono i casi a New York?

Mai così tanti casi di leptospirosi in un anno dal 2001: a contribuire all’aumento delle…

1 settimana fa

Fogli d’oro sottilissimi: arriva il goldene

Potrebbe essere usato in diverse applicazioni come catalizzatore per la conversione dell'anidride carbonica e la…

2 settimane fa

Questo sito o gli strumenti di terze parti in esso integrati trattano dati personali (es. dati di navigazione o indirizzi IP) e fanno uso di cookie o altri identificatori necessari per il funzionamento e per il raggiungimento delle finalità descritte nella cookie policy.

Leggi di più